Expandable Bayesian Networks for 3D Object Description from Multiple Views and Multiple Mode Inputs

نویسندگان

  • Zu Whan Kim
  • Ramakant Nevatia
چکیده

Computing 3D object descriptions from images is an important goal of computer vision. A key problem here is the evaluation of a hypothesis based on evidence that is uncertain. There have been few efforts on applying formal reasoning methods to this problem. In multiview and multimode object description problems, reasoning is required on evidence features extracted from multiple images and nonintensity data. One challenge here is that the number of the evidence features varies at runtime because the number of images being used is not fixed and some modalities may not always be available. We introduce an augmented Bayesian network, the expandable Bayesian network (EBN), which instantiates its structure at runtime according to the structure of input. We introduce the use of hidden variables to handle correlation of evidence features across images. We show an application of an EBN to a multiview building description system. Experimental results show that the proposed method gives significant and consistent performance improvement to others.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convolutional Gating Network for Object Tracking

Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem.  The paper presents a new model for combining convolutiona...

متن کامل

Learning Bayesian Networks for Diverse and Varying numbers of Evidence Sets

We introduce an expandable Bayesian network (EBN) to handle the combination of diverse multiple homogeneous evidence sets. An EBN is an augmented Bayesian network which instantiates its structure at runtime according to the structure of input. We show an application of an EBN for a multi-view 3-D object description problem in computer vision. The experiments show that the proposed method gives ...

متن کامل

Feature based 3D Object Recognition using Artificial Neural Networks

The recognition of objects is one of the main goals for computer vision research. This paper formulates and solves the problem of three-dimensional (3D) object recognition for Polyhedral objects. A multiple view of 2D intensity images are taken from multiple cameras and used to model the 3D objects. The proposed methodology is based on extracting set of features from the 2D images which include...

متن کامل

A Bayesian Approach to Learning Single View Generalization in 3D Object Recognition

Three dimensional vision relies on the ability to generalize from known views of an object to novel views. Of particular interest is the ability of human observers to generalize from a single view of a previously unseen object to novel views. This paper describes a method for achieving single view generalization by modeling conditional densities of the form P (S|B, B′) or P (B′|B, S) and applyi...

متن کامل

NeuroTracker Three-Dimensional Multiple Object Tracking (3D-MOT): A Tool to Improve Concentration and Game Performance among Basketball Athletes

Background. Basketball is a dynamic sport where athletes are expected to observe the fast movements of team players and opponents in a performance. This condition requires a collective focus on the stipulated tasks, to achieve peak performance. Besides, training is frequently performed to improve concentration and athlete performance. This instigates the need for technology-based methods, inclu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Pattern Anal. Mach. Intell.

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2003